

Faculty of Engineering and Technology Electrical and Computer Engineering Department Simulation Lab (4104) Amplitude Modulation and demodulation in lab VIEW

Prepared by:

Name: Anas Tomaizeh

Instructor:

Dr: Jamal syam

Date:

29/4/2019

Section: #1

Number: 1152325

Teacher Assistance: Eng. Ahmed W.Hamed

Abstract:

The aim of this experiment is to became familiar with new programme, which is Lab VIEW or virtual instrument, and to simulate AM modulation by this new tool and show the results when some parameter changed such as frequency, modulation index, amplitude and carrier frequency.

Results: The results obtain in this experiment are acceptable with theoretical theorems.

Table of Contents

Introduction:	.4
Methods and materials:	. 5
2.1: Amplitude modulation and demodulation:	. 5
2.2: Calculator:	. 6
Procedure:	. 7
Results:	.9
Conclusion:	11
References:1	12
	Introduction: Methods and materials: 2.1: Amplitude modulation and demodulation: 2.2: Calculator: Procedure: Results: Conclusion: 1 References: 1

List of Figures:

Figure 1: block diagram of generation of AM modulation	4
Figure 2: Frequency representation of AM signal	4
Figure 3: Demodulation of AM signal	5
Figure 4: Implementation of AM modulation in lab View	5
Figure 5: Demodulation of AM signal implemented in lab View	6
Figure 6: Calculator system implemented in lab view	6
Figure 7: Simulate signal setting	7
Figure 8: Spectral Analyser setting	7
Figure 9: carrier, modulated and frequency representation of AM modulation	9
Figure 10: demodulated signal	9
Figure 11: multiplication operation and its results	. 10
Figure 12: Division operation and its result	. 10
Figure 13: addition operations and its result	. 10

1. Introduction:

Amplitude modulation (**AM**) is a modulation technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. In amplitude modulation, the amplitude (signal strength) of the carrier wave is varied in proportion to that of the message signal being transmitted. The message signal is, for example, a function of the sound to be reproduced by a loudspeaker, or the light intensity of pixels of a television screen. This technique contrasts with frequency modulation, in which the frequency of the carrier signal is varied. The equations describe the AM modulated signal

 $s(t) = Ac(1 + kam(t)) \cos 2\pi fct$ (1) Where: m(t): message signal , ka: sensitivity of the modulator and fc: carrier frequency.

And the block diagram describe the generat the AM modualtions shown in Figure 1:

Figure 1: block diagram of generation of AM modulation

The frequency representation of AM signal shown in Figure 2:

Figure 2: Frequency representation of AM signal

The demodulation process of AM signal: There are a number of techniques that can be used to demodulate AM signals. Different types are used in different applications to suit their performance and cost. Diode rectifier envelope detector: This form of detector is the simplest form, only requiring a single diode and a couple of other low cost components. The performance is adequate for low cost AM broadcast radios, but it does not meet the standards of other forms of demodulation. The block diagram describe the demodulation of AM signal shown in the Figure 3.

Figure 3: Demodulation of AM signal

2. Methods and materials:

2.1: Amplitude modulation and demodulation:

The block diagram, which is, represent the generation of AM signal was implemented in Lb View Program, it is show in the Figure 4, these blocks inserted from the library and wired inside while loop.

Figure 4: Implementation of AM modulation in lab View

There are different methods to demodulate the AM signal, the method used in this experiment contain from diode, DC removable and low pass Filter, the

Figure 5 show the demodulation of AM signal.

Figure 5: Demodulation of AM signal implemented in lab View

2.2: Calculator:

The system shown in the Figure 6 representation the calculator, this system implemented in lab View use two controls for two numbers, indicator to display the result of operation and a slide control to specify the operation to be performed.

Figure 6: Calculator system implemented in lab view

4. Procedure:

The systems shown in the Figures 4 and 5 were built in lab View program, from the library of software the while loop inserted and it is make as a suitable size to add the component inside it.

In the front panel, the waveform and slides pointer were inserted in it from library, then simulate signal was inserted in the control window and the setting of this part was changed as shown in the figure 7

Signal Signal type			Result Preview
Sine	~		
Frequency (Hz)	Phase (deg)	0.5-	
10	0		pi .
Amplitude	Offset	Duty cycle (%)	
1	0	50	₹ -0.5-
Add noise			
Noise type			-1-
Uniform White No	oise 🗸		0 0.099
Noise amplitude	Seed number	Trials	Time
0.6	-1	1	Time Stamps
Timing			Relative to start of measurement
Samples per second	(Hz)		 Absolute (date and time)
2000	O Simulate	Reset Signal	
Number of samples	Run as fa:	Reset phase, seed, and time stamps	
200	Automatic	Use continuous generation	
Integer number o	f cycles		
Actual number of	samples		Signal Name
200			Signal name
Actual frequency			Sine
10			
Actual frequency 10			Sine

Figure 7: Simulate signal setting

On the same window the spectral analyser inserted from the library, and the setting of it changed as shown in the Figure 8

Spectral Measurement			Windowed Input Signal
Magnitude (peak) Result Magnitude (RMS) We Linear		Result	3.60339 -
		💿 Linear	2 ⁻
Power spectrum OdB		© dB	
🖱 Power spectral den	siter		
Window			-3.60339 -
Sladkman			0 0.2 0.4 0.6 0.8 1 Time
🔲 Averaying			Magnitude Result Preview
Mode			
C Vector			e^{2-b}
C RMS			
C Poak hold			Ž ¹⁻
Weighting	Number c	fAverages	o-Dijevi ແລະ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ ເຊັ່າ
C Linear	10	1-5-1	Frequency
Exponential		Lines (
Produce Spectru	m		+ -
Every iteration			🗢 2 – Hanna I. ar Sheki da ta ƙƙƙƙƙƙƙ
C Only when averaging complete			Sample Result
Phase			
🔲 Unwrap phase			-+
Convert to degre	10		Frequency

Figure 8: Spectral Analyser setting

Another components inserted in the control window such as: Multiply, adder there are obtained from numerical library, and it connected as show in the Figures.

For calculator, two controls for two numbers, indicator to display the result of operation add, and a slide control to specify the operation to be performed were all placed was inserted on the front panel.

5. Results:

The result from the system shown in the Figure 4 which is the generation of AM signal appear at front panel and it is show in the Figure

Figure 9: carrier, modulated and frequency representation of AM modulation

The result obtained from the figure 5, which is the demodulation of AM signal shown in the Figure

Figure 10: demodulated signal

Figure 11: multiplication operation and its results

Figure 12: Division operation and its result

Figure 13: addition operations and its result

7. Conclusion:

In this experiment, AM Modulation, Demodulation and a calculator system implemented in LabVIEW Software, the main benefits of this experiment was to get familiar with the software and to see its ability to test the effect of parameter changing on the modulation and demodulation process.

8. References:

[1]https://www.google.ps/search?q=Am+modulation&safe=strict&source=lnms&tbm=isch&sa=X&v ed=0ahUKEwjK1aOAqvPhAhXRZFAKHZqdA4EQ_AUIDigB&biw=1242&bih=553#imgdii=fl8gq6okAE8wM:&imgrc=XiQm_UI_P1kP_M:

[2] Simulation LAB manual, 2019-second semester editions April 29, 2019 4.38 AM